# Atomic Energy Central School, Indore

## Class XII Chemistry CO-ORDINATION COMPOUNDS

Handout 6/6

### **Bonding in Metal Carbonyls**

The homoleptic carbonyls (compounds containing carbonyl ligands only) are formed by most of the transition metals.

The metal-carbon bond in metal carbonyls possess both s and p character. The M–C s bond is formed by the donation of lone pair of electrons on the carbonyl carbon into a vacant orbital of the metal. The M–C p bond is formed by the donation of a pair of electrons from a filled d orbital of metal into the vacant antibonding p\* orbital of carbon monoxide. The metal to ligand bonding creates a synergic effect which strengthens the bond between CO and the metal.



#### Stability of Coordination Compounds

- The stability of a complex in solution refers to the degree of association between the two species involved in the state of equilibrium.
- A reaction of the type:  $M + 4L \Leftrightarrow ML_4$ , the larger the **stability constant**  $\beta$ , the higher the proportion of  $ML_4$  that exists in solution. The instability constant or the dissociation constant of coordination compounds is defined as the reciprocal of the formation constant/stability constant  $\beta$ .

#### Importance and Applications of Coordination Compounds

• Coordination compounds find use in many qualitative and quantitative chemical analysis.

Examples of such reagents include EDTA, DMG(dimethylglyoxime),  $\alpha$ -nitroso- $\beta$ -naphthol, cupron, etc.

- Hardness of water is estimated by simple titration with Na<sub>2</sub>EDTA. The Ca<sup>2+</sup> and Mg<sup>2+</sup> ions form stable complexes with EDTA.
- Some important extraction processes of metals, like those of silver and gold, make use of complex formation. Gold, for example, combines with cyanide to form the coordination entity [Au(CN)<sub>2</sub>]<sup>-</sup> in aqueous solution. Gold can be separated in metallic form from this solution by the addition of zinc.
- Purification of metals can be achieved through formation and subsequent decomposition of their coordination compounds. For example, impure nickel is converted to [Ni(CO)<sub>4</sub>], which is decomposed to yield pure nickel.
- Coordination compounds are of great importance in biological systems. Ex. chlorophyll, is a coordination compound of magnesium, used in photosynthesis. Haemoglobin, is a coordination compound of iron. Vitamin  $B_{12}$ , cyanocobalamine, is a coordination compound of cobalt.
- The enzymes like, carboxypeptidase A and carbonic anhydrase (catalysts of biological systems).
- Coordination compounds are used as catalysts for many industrial processes. Examples include rhodium complex, [(Ph<sub>3</sub>P)<sub>3</sub>RhCl], a Wilkinson catalyst, is used for the hydrogenation of alkenes.
- Articles can be electroplated with silver and gold much more smoothly and evenly from solutions of the complexes, [Ag(CN)<sub>2</sub>]<sup>-</sup> and [Au(CN)<sub>2</sub>]<sup>-</sup> than from a solution of simple metal ions.
- In black and white photography, the developed film is fixed by washing with hypo solution which dissolves the undecomposed AgBr to form a complex ion,  $[Ag(S_2O_3)_2]^{3-}$ .
- Excess of copper and iron are removed by the chelating ligands D-penicillamine and desferrioxime B via the formation of coordination compounds.
- EDTA is used in the treatment of lead poisoning.
- *cis*-platin [Pt(NH<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub>] effectively inhibit the growth of cancer tumors.